Some New Results on the Kinetic Ising Model in a Pure Phase
نویسنده
چکیده
We consider a general class of Glauber dynamics reversible with respect to the standard Ising model in Z with zero external field and inverse temperature β strictly larger than the critical value βc in dimension 2 or the so called “slab threshold” β̂c in dimension d > 3. We first prove that the inverse spectral gap in a large cube of side N with plus boundary conditions is, apart from logarithmic corrections, larger than N in d = 2 while the logarithmic Sobolev constant is instead larger than N in any dimension. Such a result substantially improves over all the previous existing bounds and agrees with a similar computations obtained in the framework of a one dimensional toy model based on mean curvature motion. The proof, based on a suggestion made by H.T. Yau some years ago, explicitly constructs a subtle test function which forces a large droplet of the minus phase inside the plus phase. The relevant bounds for general d ≥ 2 are then obtained via a careful use of the recent L–approach to the Wulff construction. Finally we prove that in d = 2 the probability that two independent initial configurations, distributed according to the infinite volume plus phase and evolving under any coupling, agree at the origin at time t is bounded from below by a stretched exponential exp(− √ t), again apart from logarithmic corrections. Such a result should be considered as a first step toward a rigorous proof that, as conjectured by Fisher and Huse some years ago, the equilibrium time auto-correlation of the spin at the origin decays as a stretched exponential in d = 2. 2000 MSC: 82B10, 82B20, 60K35
منابع مشابه
Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملرهیافت معادلات جریان در مدل آیزینگ کوانتمی یک بعدی
One dimensional quantum Ising model with nearest neighbor interaction in transverse magnetic field is one of the simplest spin models which undergo quantum phase transition. This model has been precisely solved using different methods. In this paper, we solve this model in uniform magnetic field -Jgσxn precisely using a new method called Continuous Unitary Transformations (CUT) or flow equation...
متن کاملPhase Transitions in the Kinetic Ising Model on the Temporal Directed Random Regular Graph
We investigate a kinetic Ising model with the Metropolis algorithm on the temporal directed random q-regular graph. We introduce a rewiring time τ as a parameter of the model and show that there is a critical τ = τ ∗ above which the model exhibits continuous order-disorder phase transition and below which the transition is discontinuous. We discuss our findings in a light of the very recent res...
متن کاملHigh order perturbation study of the frustrated quantum Ising chain
In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...
متن کامل